
OpenVZ
Linux Containers

Kir Kolyshkin
<kir@openvz.org>

OpenStack Design Summit
16 April 2012, San Francisco

Agenda

● Virtualization approaches

● Containers versus hypervisors:

● OpenVZ internals

● New features

3

What is virtualization?

Virtualization is a technique for deploying technologies. Virtualization
creates a level of indirection or an abstraction layer between a
physical object and the managing or using application.

http://www.aarohi.net/info/glossary.html

Virtualization is a framework or methodology of dividing the
resources of a computer into multiple execution environments...

http://www.kernelthread.com/publications/virtualization/

A key benefit of the virtualization is the ability to run multiple
operating systems on a single physical server and share the
underlying hardware resources – known as partitioning.

http://www.vmware.com/pdf/virtualization.pdf

http://www.aarohi.net/info/glossary.html
http://www.kernelthread.com/publications/virtualization/
http://www.vmware.com/pdf/virtualization.pdf

4

Ways to Virtualize

● Hardware Emulation

● Para-Virtualization

● Containers-type Virtualization

(a.k.a. OS-level Virtualization)

● Multi-server virtualization

5

Emulation/Paravirtualization

● VMware
● Parallels
● QEmu
● Bochs

● Xen
● KVM

6

Containers

● OpenVZ / Parallels Containers
● LXC
● FreeBSD jails
● Solaris Containers/Zones
● IBM AIX6 WPARs (Workload Partitions)

Comparison

Hypervisor (VM)
 One real HW, many virtual

HWs, many OSs
 High versatility – can run

different OSs
 Lower density,

performance, scalability
 «Lowers» are mitigated by

new hardware features
(such as VT-D)

Containers (CT)
 One real HW (no virtual

HW), one kernel, many
userspace instances

 Higher density,
natural page sharing

 Dynamic resource
allocation

 Native performance:
[almost] no overhead

Containers are thinner and more
performant than hypervisors

● Containers
– Share host OS and Drivers

– Have small virtualization layer

– Naturally share pages

● Hypervisors
– Have separate OS plus virtual Hardware

– Hardware emulation requires VMM state

– Have trouble sharing Guest OS pages

● Containers are more elastic than hypervisors

● Container slicing of the OS is ideally suited to cloud slicing

● Hypervisors’ only advantage in IaaS is support for different OS
families on one server

Density

Hypervisor

41 VMs

Containers with page sharing

112 CTs

Containers without page sharing

57 CTs

Admin CP time > 4 sec

Perf: LAMP throughput

Perf: LAMP response time

Performance: vConsolidate

OpenVZ vs. Xen from HP labs

● For all the configuration and workloads we
have tested, Xen incurs higher virtualization
overhead than OpenVZ does

● For all the cases tested, the virtualization
overhead observed in OpenVZ is limited, and
can be neglected in many scenarios

● Xen systems becomes overloaded when
hosting four instances of RUBiS, while the
OpenVZ system should be able to host at
least six without being overloaded

14

Evolution of Operating Systems

● Multitask
many processes

● Multiuser
many users

● Multicontainer
many containers (CTs, VEs, VPSs, guests, partitions...)

15

OpenVZ: components

 Kernel
– Namespaces: virtualization and Isolation
– CGroups: Resource Management
– Checkpoint/restart (live migration)

 Tools
– vzctl: containers control utility

 Templates
– precreated images for fast container creation

16

Kernel: Virtualization & Isolation

Each container has its own
● Files: chroot()

System libraries, applications, virtualized /proc and /sys, virtualized locks etc.

● Process tree (PID namespace)
Featuring virtualized PIDs, so that the init PID is 1

● Network (net namespace)
Virtual network device, its own IP addresses, set of netfilter and routing rules

● Devices
Plus if needed, any VE can be granted access to real devices like network
interfaces, serial ports, disk partitions, etc.

● IPC objects (IPC namespace)
shared memory, semaphores, messages

● …

17

Kernel: Resource Management

Managed resource sharing and limiting.
● User Beancounters per-CT resource

counters, limits, and guarantees
(kernel memory, network buffers, phys pages, etc.)

● Fair CPU scheduler (with shares and hard limits)

● Two-level disk quota (first-level: per-CT quota;
second-level: ordinary user/group quota inside a CT)

● Disk I/O priority (also per-CT)

Kernel: Checkpointing/Migration

● Complete CT state can be saved in a file
– running processes
– opened files
– network connections, buffers, backlogs, etc.
– memory segments

● CT state can be restored later
● CT can be restored on a different server

19

Tools: CT control

vzctl create 101 --ostemplate fedora-15
vzctl set 101 --ipadd 20.21.22.23/24 --save
vzctl start 101
vzctl exec 101 ps ax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 init
11830 ? Ss 0:00 syslogd -m 0
11897 ? Ss 0:00 /usr/sbin/sshd
11943 ? Ss 0:00 xinetd -stayalive -pidfile ...
12218 ? Ss 0:00 sendmail: accepting connections
12265 ? Ss 0:00 sendmail: Queue runner@01:00:00
13362 ? Ss 0:00 /usr/sbin/httpd
13363 ? S 0:00 _ /usr/sbin/httpd
..
13373 ? S 0:00 _ /usr/sbin/httpd
6416 ? Rs 0:00 ps axf

vzctl enter 101
bash# logout
vzctl stop 101
vzctl destroy 101

Feature: VSwap

● A new approach to memory management,
only two parameters to configure: RAM, swap

● Appeared in RHEL6-based OpenVZ kernel
● Swap is virtual, no actual I/O is performed
● Slow down to emulate real swap
● Only when actual global RAM shortage occurs,

virtual swap goes into the real swap

Feature: ploop

● Reimplementation of Linux loop device
● Modular architecture
● Support for different file formats (“plain”,

QCOW2, etc)
● Network storage is supported (NFS)
● Snapshots and fast provisioning

via stacked images
● Write tracker for faster live migration

Feature: CRIU

● Checkpoint/Restore (mostly) In Userspace
● Kernel manage processes, knows everything
● All efforts to merge CPT to Linux kernel failed
● Solution: let's do it in userpace!
● Minimal kernel intervention
● First set of patches was recently accepted

● See http://criu.org/

http://criu.org/

CRIU merge comment from akpm

Checkpoint/restart feature work.

A note on this: this is a project by various mad Russians to
perform c/r mainly from userspace, with various oddball
helper code added into the kernel where the need is
demonstrated.

So rather than some large central lump of code, what we
have is little bits and pieces popping up in various places
which either expose something new or which permit
something which is normally kernel-private to be modified.

The overall project is an ongoing thing. I've judged that the
size and scope of the thing means that we're more likely to be
successful with it if we integrate the support into mainline
piecemeal rather than allowing it all to develop out-of-tree.

Development

● Most of the magic is in the kernel
● Use RHEL kernels as a base
● Support it for many years

(RHEL4 kernels from 2006 are still supported)
● Merge bits and pieces upstream, then reuse
● Plans to include most of the kernel stuff till

RHEL7

LXC vs OpenVZ

● OpenVZ was off-the-mainline historically
– developing since 2000

● We are working on merging bits and pieces,
with more than 1500 patches in mainline

● Code in mainline is used by OpenVZ
● OpenVZ is production ready and stable
● LXC is a work-in-progress

– not a ready replacement for OpenVZ
● We will keep maintaining OpenVZ for a while

To mainline we go

● II Parallels is the driving force behind Linux
containers

● Collaborating with the Linux community to
move OpenVZ upstream into the Linux kernel

● Ensures that Linux delivers a single consistent
container technology

● vzctl will support mainline containers
● No rerun of Xen/KVM wars!

To sum it up

● Platform-independent
– as long as Linux supports it, we support it

● No problems with scalability or disk I/O
– lots of memory, lots of CPUs no prob
– native I/O speed

● Unbeatable density and performance
● Reliable, supported, free
● Plays well with others

Thank you!

http://openvz.org/

http://criu.org/

kir@openvz.org

http://openvz.org/
http://criu.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

