
Recent advances
in the Linux kernel

resource management

Kir Kolyshkin, OpenVZ
kir@openvz.org

Agenda
● Resources to account and control
● Some background on containers
● Existing functionality, shortcomings
● Control Groups a.k.a. cgroups
● Memory Controller
● Future work

Resources

Why?
● All resources are finite
● Multiple tasks and users
● Need usage statistics / bookkeeping
● Need Denial of Service protection
● Need Quality of Service level

(not only limits but guarantees)

What?
● CPU
● Memory (RAM)
● Swap
● Disk space
● Disk I/O
● Network

Resources: CPU
CPU is given to tasks in time slices

● CPU shares/weights
● CPU limits
● for SMP: CPU affinity

Resources: Memory & swap
● User memory

– Virtual and physical (RSS) memory
– Dirty page cache

● Kernel memory
– Various objects, different allocators
– Special case: network buffers

● Swap space

Resources: disk
● Disk space
● Disk I/O bandwidth

– read/write
– mmap()
– swapin/swapout
– Problem: most of I/O is async

Resources: networking
● Network bandwidth: solved by tc
● Traffic Control:

– Shaping
– Scheduling
– Policies
– Dropping

Containers

What are containers?
● Multiple isolated userspace

instances
● Running on top of a single kernel
● Like VMs but very lightweight,

native performance, low overhead

Containers Implementations
● OpenVZ
● Parallels Virtuozzo Containers
● FreeBSD jails
● Linux-VServer
● Solaris 10 Containers/Zones
● IBM AIX6 WPARs

(Workload Partitions)

Containers cont'd
● Multiple containers should

peacefully co-exist, need DoS
protection

● From the resource management
point of view, containers are just
groups of processes.

Existing mechanisms

Disk Quota
● Per mount point disk quota

for users and groups
● Soft limits, hard limits, grace periods
● Can see the current usage
● Can be inc'd/dec'd on-the-fly
● Applications are expecting disk

space shortage (or at least should
be)

CPU
● Per-process nice value which can be

changed on-the-fly (nice, renice)
● Real-time priority queue
● Hard CPU time limit (ulimit -c)

ulimit
● setrlimit()/getrlimit() syscalls
● Controls 16 different resources:

core file size, data seg size, scheduling priority, file size, pending signals,
max locked memory, max memory size, number of open files, pipe size,
POSIX message queues, real-time priority, stack size, cpu time, max user processes,
virtual memory, file locks

● Soft limits and hard limits

ulimit: problems
● Not all resources are covered
● Ulimits set in the current context

– the only good place to set is login
– some can only be decreased run-time

● All limits are per-process
– only NPROC is per-UID

● Current usage values are unknown
● Memory limits are mostly ignored

Control Groups

Control Groups
● A generic mechanism for grouping

tasks into hierarchical groups
● Multiple resource controllers
● Possible to have different groups for

different controllers
● Managed via cgroup filesystem

Control Groups: interface
Managed via cgroup filesystem:
mkdir /dev/cgroup
mount -t cgroup none /dev/cgroup
mkdir /dev/cgroup/0
cd /dev/cgroup/0
echo $$ > tasks
cat /proc/self/cgroup
/etc/init.d/httpd start

Control Groups: history
● A feature known as cpusets was

developed by big iron Bull/SGI guys
● Used to maintain process groups to

NUMA nodes affinity
● Paul Menage generalized it
● Now cpusets is just one of the

resource controllers

Memory Controller

Memory controller
● User memory:

– RSS
– Page cache

● Reclamation
– Same as try_to_free_pages()

● OOM killer

User Memory

VMAs classification

● unreclaimable:
private and anonymous

● reclaimable:
shared file mappings

Unused pages Used pages Unreclaimable VMAsReclaimable VMAs

“Lengths of mappings” resource

“RSS” resource

Pages classification

● unused:
parts of mapped regions

● used:
touched pages

Task address space

MemCtrl: interface
echo 4M > memory.limit_in_bytes
cat memory.limit_in_bytes
4194304
cat memory.usage_in_bytes
172032
cat memory.max_usage_in_bytes
294912
cat memory.failcnt
0
cat memory.stat
....

Shared Pages accounting
● Shared code/library segments
● Approaches:

– Charge to the first user only (unfair)
– Charge to all users (incorrect totals)
– Charge a fraction to every user

Page fractions accounting

C1

C2

C3C4

1½

½¼

¼¼

¼

Algorithm benefits
● O(1) algorithm of

adding and removing

● The sum of RSS on
all beancounters is
an amount of all
actually used pages

Future

Future a.k.a. TODO
● Shared pages accounting
● VMA (user mappings) length ctrl
● Kernel memory controller
● cgroups checkpoint/restart
● per-cgroup I/O priorities
● All that is available in OpenVZ;

needs to be ported to mainstream

More Info

/usr/src/linux/Documentation/cgroups/*

/usr/src/linux/Documentation/controllers/*

containers@linux-foundation.org

mailto:containers@linux-foundation.org

Questions? Comments?

kir@openvz.org

Booth #63

mailto:kir@openvz.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

