
Recent advances
in the Linux kernel 

resource management

Kir Kolyshkin, OpenVZ
kir@openvz.org



Agenda
● Resources to account and control
● Some background on containers
● Existing functionality, shortcomings
● Control Groups a.k.a. cgroups
● Memory Controller
● Future work



Resources



Why?
● All resources are finite
● Multiple tasks and users
● Need usage statistics / bookkeeping
● Need Denial of Service protection
● Need Quality of Service level

(not only limits but guarantees)



What?
● CPU
● Memory (RAM)
● Swap
● Disk space
● Disk I/O
● Network



Resources: CPU
CPU is given to tasks in time slices

● CPU shares/weights
● CPU limits
● for SMP: CPU affinity



Resources: Memory & swap
● User memory

– Virtual and physical (RSS) memory
– Dirty page cache

● Kernel memory
– Various objects, different allocators
– Special case: network buffers

● Swap space



Resources: disk
● Disk space
● Disk I/O bandwidth

– read/write
– mmap()
– swapin/swapout
– Problem: most of I/O is async



Resources: networking
● Network bandwidth: solved by tc
● Traffic Control:

– Shaping
– Scheduling
– Policies
– Dropping



Containers



What are containers?
● Multiple isolated userspace 

instances
● Running on top of a single kernel
● Like VMs but very lightweight,

native performance, low overhead



Containers Implementations
● OpenVZ
● Parallels Virtuozzo Containers
● FreeBSD jails
● Linux-VServer
● Solaris 10 Containers/Zones
● IBM AIX6 WPARs

(Workload Partitions)



Containers cont'd
● Multiple containers should 

peacefully co-exist, need DoS 
protection

● From the resource management 
point of view, containers are just 
groups of processes.



Existing mechanisms



Disk Quota
● Per mount point disk quota

for users and groups
● Soft limits, hard limits, grace periods
● Can see the current usage
● Can be inc'd/dec'd on-the-fly
● Applications are expecting disk 

space shortage (or at least should 
be)



CPU
● Per-process nice value which can be 

changed on-the-fly (nice, renice)
● Real-time priority queue
● Hard CPU time limit (ulimit -c)



ulimit
● setrlimit()/getrlimit() syscalls
● Controls 16 different resources:

core file size, data seg size, scheduling priority, file size, pending signals,
max locked memory, max memory size, number of open files, pipe size,
POSIX message queues, real-time priority, stack size, cpu time, max user processes,
virtual memory, file locks

● Soft limits and hard limits



ulimit: problems
● Not all resources are covered
● Ulimits set in the current context

– the only good place to set is login
– some can only be decreased run-time

● All limits are per-process
– only NPROC is per-UID

● Current usage values are unknown
● Memory limits are mostly ignored



Control Groups



Control Groups
● A generic mechanism for grouping 

tasks into hierarchical groups
● Multiple resource controllers
● Possible to have different groups for 

different controllers
● Managed via cgroup filesystem



Control Groups: interface
Managed via cgroup filesystem:
mkdir /dev/cgroup
mount -t cgroup none /dev/cgroup
mkdir /dev/cgroup/0
cd /dev/cgroup/0
echo $$ > tasks
cat /proc/self/cgroup
/etc/init.d/httpd start



Control Groups: history
● A feature known as cpusets was 

developed by big iron Bull/SGI guys
● Used to maintain process groups to 

NUMA nodes affinity
● Paul Menage generalized it
● Now cpusets is just one of the 

resource controllers



Memory Controller



Memory controller
● User memory:

– RSS
– Page cache

● Reclamation
– Same as try_to_free_pages()

● OOM killer



User Memory

VMAs classification

● unreclaimable:
private and anonymous

● reclaimable:
shared file mappings

Unused pages Used pages Unreclaimable VMAsReclaimable VMAs

“Lengths of mappings” resource

“RSS” resource

Pages classification

● unused:
parts of mapped regions

● used:
touched pages

Task address space



MemCtrl: interface
# echo 4M > memory.limit_in_bytes
# cat memory.limit_in_bytes
4194304
# cat memory.usage_in_bytes
172032
# cat memory.max_usage_in_bytes
294912
# cat memory.failcnt
0
# cat memory.stat
....



Shared Pages accounting
● Shared code/library segments
● Approaches:

– Charge to the first user only (unfair)
– Charge to all users (incorrect totals)
– Charge a fraction to every user



Page fractions accounting
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Algorithm benefits
● O(1) algorithm of 

adding and removing

● The sum of RSS on 
all beancounters is 
an amount of all 
actually used pages



Future



Future a.k.a. TODO
● Shared pages accounting
● VMA (user mappings) length ctrl
● Kernel memory controller
● cgroups checkpoint/restart
● per-cgroup I/O priorities
● All that is available in OpenVZ;

needs to be ported to mainstream



More Info

/usr/src/linux/Documentation/cgroups/*

/usr/src/linux/Documentation/controllers/*

containers@linux-foundation.org

mailto:containers@linux-foundation.org


Questions? Comments?

kir@openvz.org

Booth #63

mailto:kir@openvz.org
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