&Openvz

Introduction

OpenVZ is an operating system-level server virtualization
solution, built on Linux. It creates many isolated, secure virtual
environments (VEs, also known as virtual private servers or
VPSs) on a single physical server enabling better server
utilization and ensuring that applications do not conflict. Each
VE performs and executes exactly like a stand-alone server; VEs
can be rebooted independently and have root access, users, IP
addresses, memory, processes, files, applications, system
libraries and configuration files.

With OpenVZ, you can create up to several hundreds VEs on a
single box (see chart at right).

Technical Background

OpenVZ consists of a modified Linux kernel plus user-level tools.
OpenVZ kernel adds a notion of virtual environments. It
provides virtualization, isolation and resource management.

Virtualization and Isolation

Each VE has its own:

- Files (system libraries, applications, virtualized /proc and /sys,
file locks)

- Process tree (featuring virtualized PIDs)

- Network (own virtualized network device, IP addresses, set of
routing and netfilter (iptables) rules)

- Devices (if needed, a VE can be granted an access to the real
devices like network interfaces, disk partitions, serial ports etc.)
- IPC (inter-process comminucation) objects (shared memory,
semaphores, messages)

Resource Management

Kernel shares and limits VE resources, so no VE can abuse
system resources. The three main subsystems are:

- User Beancounters. A set of per-VE resource counters, limits,
and guarantees. Resources such as kernel memory, network
buffers, physical and virtual memory pages etc. are accounted.
This can be thought of as a very advanced ulimit.

- Fair CPU scheduler. It balances the CPU time between VEs so
no VE can abuse the CPU, and can be used to provide CPU share
limits and guarantees.

- Two-level disk quota. First level is per-VE disk quota, second
level is a standard UNIX per-user and per-group disk quota
inside a VE.

Zero Downtime (Live) Migration and Checkpointing
Kernel freezes and saves the complete state (checkpoints) of a
VE on one physical server, then moves and restores it on the
other, preserving everything, including open network
connections. So, from the user's point of view it looks like a
delay in processing, not downtime.

Server Virtualization
Open Source Project

Density
g a4
Q
(n]
.
£
2
]
(0]
c
[=]
o
0
Q
0
50 100 150

Number of VEs

The above graph shows the
dependency of response time on the
number of VEs running. Response
time of of Apache web servers on a
box with 768 megabytes (3/4 GB)
of RAM was measured. In addition
to Apache, each VE was running
init, syslogd, sendmail, sshd and
cron. Response time below one
second is considered to be normal.
With more than 120 VEs response
time becomes unacceptable
because of excessive swapping.
Estimation is that on the same box

Use Cases

Server Consolidation
- Uniform management

- Easy to upgrade

- More scalable

- Fast migration

- Save electricity/rack space

Development and Testing

- Different distros can co-exist

- A VE can be created in a minute

- Can have hundreds of VEs

- Cloning, snapshots, rollbacks

- A VE is a sandbox: work/play, no fear

Security

- Give each app own isolated VE

- Security hole in an application
will not affect others

- Dynamic resource management

Hosting

- Isolated users

- A VE is like a real server, just
cheaper

- Much easier to admin

Educational
- Every student can have root access
- Different distributions



